Machine Learning Pipeline on AWS Training
This Machine Learning Pipeline on AWS Training course explores how to use the machine learning (ML) pipeline to solve a real business problem in a project-based learning environment. Students will learn about each phase of the pipeline from instructor presentations and demonstrations and then apply that knowledge to complete a project solving one of three business problems: fraud detection, recommendation engines, or flight delays. By the end of the course, students will have successfully built, trained, evaluated, tuned, and deployed an ML model using Amazon SageMaker that solves their selected business problem.
Duration: 4 days
RESOURCES
- Machine Learning Pipeline on AWS Training – https://www.wiley.com/
- Machine Learning Pipeline on AWS Training – https://www.packtpub.com/
- Machine Learning Pipeline on AWS – https://store.logicaloperations.com/
- Machine Learning Pipeline on AWS Training – https://us.artechhouse.com/
- Machine Learning Pipeline on AWS Training – https://www.amazon.com/
RELATED COURSES
- AWS Technical Essentials Training
- Advanced Developing on AWS
- Developing on AWS Training
- Deep Learning on AWS Training
CUSTOMIZE It
- We can adapt this Machine Learning Pipeline on AWS course to your group’s background and work requirements at little to no added cost.
- If you are familiar with some aspects of this Machine Learning Pipeline on AWS course, we can omit or shorten their discussion.
- We can adjust the emphasis placed on the various topics or build the Machine Learning Pipeline on AWS Course around the mix of technologies of interest to you (including technologies other than those included in this outline).
- If your background is nontechnical, we can exclude the more technical topics, include the topics that may be of special interest to you (e.g., as a manager or policy-maker), and present the Machine Learning Pipeline on AWS course in manner understandable to lay audiences.
AUDIENCE/TARGET GROUP
The target audience for this Machine Learning Pipeline on AWS course:
- Developers
- Solutions Architects
- Data Engineers
- Anyone with little to no experience with ML and wants to learn about the ML pipeline using Amazon SageMaker
CLASS PREREQUISITES
The knowledge and skills that a learner must have before attending this Machine Learning Pipeline on AWS course are:
- Basic knowledge of Python programming language
- Basic understanding of AWS Cloud infrastructure (Amazon S3 and Amazon CloudWatch)
- Basic experience working in a Jupyter notebook environment
Machine Learning Pipeline on AWS Training - OBJECTIVES
Upon completing this Machine Learning Pipeline on AWS course, learners will be able to meet these objectives:
- Select and justify the appropriate ML approach for a given business problem
- Use the ML pipeline to solve a specific business problem
- Train, evaluate, deploy, and tune an ML model using Amazon SageMaker
- Describe some of the best practices for designing scalable, cost-optimized, and secure ML pipelines in AWS
- Apply machine learning to a real-life business problem after the course is complete
Machine Learning Pipeline on AWS Training - Course Syllabus:
Day One
Module 0: Introduction
- Pre-assessment
Module 1: Introduction to Machine Learning and the ML Pipeline
- Overview of machine learning, including use cases, types of machine learning, and key concepts
- Overview of the ML pipeline
- Introduction to course projects and approach
Module 2: Introduction to Amazon SageMaker
- Introduction to Amazon SageMaker
- Demo: Amazon SageMaker and Jupyter notebooks
- Hands-on: Amazon SageMaker and Jupyter notebooks
Module 3: Problem Formulation
- Overview of problem formulation and deciding if ML is the right solution
- Converting a business problem into an ML problem
- Demo: Amazon SageMaker Ground Truth
- Hands-on: Amazon SageMaker Ground Truth
- Practice problem formulation
- Formulate problems for projects
Day Two
Checkpoint 1 and Answer Review
Module 4: Preprocessing
- Overview of data collection and integration, and techniques for data preprocessing and visualization
- Practice preprocessing
- Preprocess project data
- Class discussion about projects
Day Three
Checkpoint 2 and Answer Review
Module 5: Model Training
- Choosing the right algorithm
- Formatting and splitting your data for training
- Loss functions and gradient descent for improving your model
- Demo: Create a training job in Amazon SageMaker
Module 6: Model Evaluation
- How to evaluate classification models
- How to evaluate regression models
- Practice model training and evaluation
- Train and evaluate project models
- Initial project presentations
Day Four
Checkpoint 3 and Answer Review
Module 7: Feature Engineering and Model Tuning
- Feature extraction, selection, creation, and transformation
- Hyperparameter tuning
- Demo: SageMaker hyperparameter optimization
- Practice feature engineering and model tuning
- Apply feature engineering and model tuning to projects
- Final project presentations
Module 8: Deployment
- How to deploy, inference, and monitor your model on Amazon SageMaker
- Deploying ML at the edge
- Demo: Creating an Amazon SageMaker endpoint
- Post-assessment
- Course wrap-up
Machine Learning Pipeline on AWS Training Course Wrap-Up
Whether you are looking for general information or have a specific question, we want to help.
Request More Information